
The Sprite Remote Procedure
Call System

Brent B. Welch

Report No. UCB/CSD 86/302

June 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
The Sprite Remote Procedure Call System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes Sprite’s kernel-to-kernel remote procedure call (RPC) system. User programs access
system services through the Sprite kernel on their local host, and the local kernel makes remote procedure
calls to access services located on remote hosts. Each kernel has several RPC channels so that it can be
making RPCs for several processes concurrently. A server machine keeps several kernel server processes
that are used to execute service procedures. Messages carry requests for remote procedure execution to
server kernels and carry results back to client kernels. The RPC network protocol also supports efficient
data transfers larger than the network packet size to meet the bandwidth requirements of Sprite’s
distributed filesystem.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

38

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Sprite Remote Procedure Call System

Brent B. Welch

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA Q4720

Abstract

This report describes Sprite's kernel-to-kernel remote procedure call (RPC) sys­

tem. User programs access system services through the Sprite kernel on their lo­

cal host, and the local kernel makes remote procedure calls to access services lo­

cated on remote hosts. Each kernel has several RPC channels so that it can be

making RPCs for several processes concurrently. A server machine keeps several

kernel server processes that are used to execute service procedures. Messages car­

ry requests for remote procedure execution to server kernels and carry results

back to client kernels. The RPC network protocol requires only two messages per

RPC in the common case. The protocol also supports efficient data transfers

larger than the network packet size to meet the bandwidth requirements of

Sprite's distributed filesystem. t

July 2, HJ86

t This work was supported in part by the Defense Advanced Research Projects Agen­

cy under contract N00039-85-C-0269, in part by the National Science Foundation under

grant ECS-8351961, and in part by General Motors Corporation.

1. Introduction

The Sprite operating system is designed for a set of co-operating hosts that

communicate over a network. The details of network communication are hidden

from users by modeling the Sprite system as a set of services available to user pro­

grams without regard to their network locations. Sprite services include a shared

hierarchical filesystem [\Ve085], remote program execution, and physical device

access. User processes access all system services by making system calls into a

local Sprite kernel. If a service is not implemented locally, the local Sprite kernel

uses remote procedure call (RPC) to call a service procedure on a remote server

machine. The Sprite RPC system lets the calling kernel, called the client, invoke

the remote service procedure as if it were a local procedure.

The RPC system uses messages to carry requests for remote procedure execu­

tion to servers and to carry results back to clients. It uses a network protocol

based on work by Birrell and Nelson (BiN84], which in the common case elim­

inates explicit acknowledgment messages; normally an RPC requires only a

request message and a reply message. Eliminating extra messages reduces over­

head; with only 2 messages per RPC, message handling still accounts for about

half the overhead in each RPC. Performance results in Section 6 indicate 5.8 mil­

liseconds of overhead for a remote procedure call between two Sun-2 workstations

with Intel Ethernet controllers. The protocol also supports request and reply mes­

sages larger than the maximum network packet size. This allows high bandwidth

communication, up to 380 Kbytesjsecond, for services like Sprite's network

filesystem.

The structure of the RPC system is outlined in Section 2. Section 3 describes

the RPC network protocol between a single client and a single server. Section 4

extends the protocol to a system of many clients and many servers. This includes

allowing more than one outstanding RPC by client kernels, and allowing server

kernels to execute more than one service procedure concurrently. Section 5 gives

the low-level details of how messages are moved efficiently between the network

and the processes using them. Section 6 gives the results of a few performance

benchmarks and assesses the performance cost of different parts of the RPC sys­

tem. Section 7 compares this RPC system with some others and Section 8 gives

the conclusions of the report. Finally, there are a few appendices that fill in those

details of the implementation that are not in the main report because they dis­

tract from the overall view of the system.

2. RPC System Structure

The standard model of RPC is that a remote service procedure is called by a

client process on the local machine and executed by a server process on the

Sprite RPC

remote machine. In Sprite, the client and server processes are executing in their
respective kernels' address space during an RPC. The client process is usually a
user process that has entered the kernel during a system call. The server process
is a kernel process, a process that lives entirely in the kernel's address space. The
service procedures operate on kernel data structures so it is natural to use a ker­
nel process to execute them. The client process can also be a kernel process. For
example, on a diskless workstation the page-out process, which is a kernel process,
is an RPC client when it writes dirty pages to a remote file server.

The bulk of the RPC system is a communication system used between the
client process and the server process. Through the communication system, the
client process issues a request for remote procedure execution, supplies input
parameters to the remote procedure, and waits while the remote procedure exe­
cutes. The server process uses the communication system to get the client's
requests, and to return the results of the service procedure to the client process.

The heart of the communication system is the network layer that uses mes­
sages to communicate service requests and results between client and server
processes. The network layer is described in detail in Section 3. The network
layer's use of messages is hidden by a layer of stub procedures. The function of
the stub layer is to package parameters and results into messages to be sent out,
and to unpackage parameters and results from arriving messages. There are stub
procedures on both the client and the server. Figure 1 illustrates the flow of con­
trol through the layers of the system during a remote procedure call.

The client stub procedure has the same parameters as the remote service pro­
cedure so the client process does not have to know that the service procedure exe­
cutes remotely. The function of a client stub procedure is to package up the
input parameters of the remote procedure so that the network layer can send
them to the server process in a request message. After the request message is
sent, the client stub waits for a reply message that the network layer returns to it
from the server process. The reply message contains the results of the service pro­
cedure, and the client stub procedure unpacks those results from the reply mes­
sage so its caller can access the results normally.

Server stubs are used by the server process so that service procedur2s do not
have to handle messages. The server process gets request messages from the net­
work layer and calls the server stub for the service procedure with the message
data as a parameter. The function of a server stub procedure is to unpackage the
input parameters from the request message, call the service procedure with its
regular parameters, and package up the results of the service procedure. The
server process then takes the packaged results and uses the network layer to
return them to the client process.

The stubs for a service procedure can be generated automatically, and some
RPC systems include stub compilers (eg. [BiN84]). This is useful in user-level
RPC systems that are used in a large number of different programs. The Sprite
RPC system, however, does not have a stub compiler. Although one would be a

- 2-

Sprite RPC

Client Process Server Process

Stub
Network Network

Stub
Service

Layer Layer procedure

Call stub
Package
input
parameters

Reliably
deliver
parameters

Dispatch
Wait ... to server

I stub
I Unpack
I parameters
I Compute
I results
I Package
I results
I Reliably
I deliver .. results

Dispatch
to waiting
client

Unpackage
results

RPC stub
Network returns I Boundar y

Figure 1. The execution thread as a client process calls a remote procedure.
The client process blocks while the execution thread continues in the server pro­
cess. The network layer is used to send messages between the client and server
processes, and the stub procedures hide the network layer from the client process
and the service procedure.

useful development tool, the effort of developing a stub compiler is greater than
hand-coding the required stub procedures. Sprite only has a limited number of
service procedures because it has a fixed set of distributed services. The Sprite
filesystem, for example, is the biggest service, and it only has about 20 service
procedures.

3. The Network Layer

The network layer implements the exchange of the request and reply mes­
sages between the the client process and the server process. Sprite uses a net­
work, an Ethernet [MeB76J, that limits the size of network packets and does not
guarantee their delivery. To get a reliable exchange of request and reply mes­
sages, the RPC system uses a special-purpose network protocol; it requires only 2
network packets per RPC in the common case. The network protocol also

- 3 -

Sprite RPC

supports messages larger than the maximum network packet size so that service

procedures can take or return large data blocks. This section describes the net­

wor_k protocol in a simplified world of only one client and one server, and Section

4 extends the RPC system to allow many clients and many servers.

3.1. The RPC Network Protocol

The RPC network protocol is designed to operate efficiently when there is a

series of remote procedure calls between a client and the same server. Successive

request and reply messages are used to acknowledge that previous messages were

successfully transmitted. The receipt of a reply message by the client process ack­

nowledges the safe arrival of the corresponding request message it sent to the

server, and the receipt of a request message by the server process acknowledges

the safe arrival of the previous reply message it sent to the client. This technique,

called implicit acknowledgment, comes from the RPC work done by Birrell and

Nelson [BiN84]. If no messages are lost, each RPC requires only the request mes­

sage and the reply message; no extra acknowledgment messages are needed. See

B···························~

Request

(and ack)

Request

(and ack)

·------------------------

----------------------------)>

·------------------------

--- - -- -)>

·------------------------

Computation

Reply

(and ack)

Computation

Reply

(and ack)

Computation

Reply

(and ack)

RPC

RPC

RPC

Figure 2. The RPC network protocol uses implicit acknowledgment to eliminate

explicit acknowledgment messages. The server's reply message acknowledges the

receipt of the client's request message, and the client's next request message ack­

nowledges the receipt of the server's previous reply message.

- 4-

Sprite RPC

Figure 2.

The implicit acknowledgment scheme needs a back-up in case a message gets
lost. To guard against lost messages, a client process re-sends its request message
if it does not get the reply message after a short timeout period. The retransmit­
ted request message includes a flag in the control section of the message that says
the client needs an explicit acknowledgment for the request message. When the
network layer on the server gets a retransmitted request message there are three
cases:

(1) The original request message was lost. In this case, the network layer on the
server treats the request in the same way as it would have treated the origi­
nal request: it passes the request message to the server process to initiate exe­
cution of the service procedure. In addition, the network layer also returns
an explicit acknowledgment message to the client process.

(2) No messages were lost, but the service procedure is still executing. In this
case, the network layer just returns an explicit acknowledgment message.
This case is illustrated in Figure 3.

(3) The service procedure has completed but the reply message was lost. The
re-transmitted request message does not cause the service procedure to exe­
cute again. Instead, the network layer on the server resends a saved copy of
the reply message. This in an important feature because it means that a ser­
vice procedure executes at most one time for each RPC by a client. A ser­
vice procedure that locks a file, for example, will fail if it is executed an extra

Request

(please ack)
.)>

~ ·················

Long

Computation

•

•

•

RPC

Figure 3. If the remote computation takes a long time the client process will get
a timeout error before getting the reply message. In this case it re-sends its re­
quest message to the server process and requests an explicit acknowledgment.
The network layer on the server responds with an explicit acknowledgment to let
the client process know that the remote computation is in progress.

- 5-

Sprite RPC

time.

If the server host is down then the client's re-sent request messages will not
get explicitly acknowledged. After several retransmissions the client gives up and
aborts the RPC. The server might also crash after sending an explicit ack­
nowledgment, but before completing the service procedure and sending the reply.
To detect this situation, the client continues to resend its request message at regu­
lar intervals, even after it has received an explicit acknowledgment. If the server
host crashes while executing the service procedure the client process again gets
several timeout errors and aborts the RPC.

The algorithm that the network layer uses in the client process to exchange
the request and reply messages with the server is given in Figure 4. In the exam­
ple, the Receive() procedure blocks the client process until a message arrives, or
until the wait interval passes. Note that the request message is sent to a server

RPC_ Call(serveriD, requestMsg, replyMsgPtr)
RpcHostiD serveriD;

{

}

RpcMessage requestMsg, *replyMsgPtr;

int wait, timeouts;

wait = initiaiWaitPeriod;
timeouts = 0;

Send(requestMsg, serveriD);

while (TRUE) {

}

status= Receive(replyMsgPtr, wait);
if (status== TIMEOUT) {

timeouts++;
if (timeouts > maxTimeouts)

return(TIMEOUT _ERROR);
requestMsg.flags I= PLEASE_ACKNO\VLEDGE;
Send(requestMsg, serveriD);

} else if (status = ACKNO\VLEDGMENT) {
wait = wait * 2;

} else {
return(SUCCESS);

}

Figure 4. This is the algorithm the client process uses to send its request
message to the server and wait for the reply message. The Receive() pro­
cedure blocks the client process until a message arrives, or until the wait
period passes.

- 6-

Sprite RPC

host, not to a particular server process; Section 4 discusses this issue in more

detail. Also, each time an acknowledgment message is received the timeout

period is doubled to give long-running service procedures a chance to complete

without excessive overhead from retries.

3.2. RPC Sequence Numbers

The server kernel has a passive role in the network protocol; it leaves it up to

the client process to make sure that it successfully gets the results of the service

procedure. All that is needed on the server is a way to distinguish between new

request messages and duplicate request messages sent when the client process

retransmits. The server also needs to detect old messages if the network allows

messages to get sidetracked so they arrive out of order.

The network layer on the server uses a sequence number in the control sec­

tion of each message to determine if an incoming message applies to an old

(invalid) RPC, the current RPC, or a new RPC. (Here it is assumed that there is

only one client process so that there is only a single sequence of RPCs that the

server has to monitor. This restriction is removed in Section 4.) The sequence

numbers of all the messages associated with a particular RPC are the same, and

the start of a new RPC is signaled by a message with a new sequence number.

The client chooses the sequence numbers so they increase in successive RPCs.

This allows the server to identify old (sidetracked) messages because their

sequence numbers are lower than the current sequence number. The way clients

initialize their sequence number when they boot is discussed in Appendix B.

3.3. Large Data Transfers

One of the main uses of the Sprite RPC system is the transfer of data blocks

by Sprite's network filesystem. This sub-section describes how data blocks larger

than the network's maximum packet size (about 1500 bytes with Ethernet) are

transferred efficiently. The alternatives are to use several RPCs that each

transfer an amount that can fit in one network packet, or to extend the network

protocol so that more data can be transferred in a single RPC. Using several

RPCs is less efficient because there is more overhead: each RPC has a fixed

amount of overhead that comes from setting up the request message, waiting for

the reply message, a process switch on both the client and the server, and other

book-keeping like setting up timers. If the protocol is extended to be able to

transfer more data in a single RPC, the fixed overhead is amortized over more

data, and the transfer of a large block of data is faster. The improvement in per­

formance by sending more data at one time has been presented in studies by

Lazowska et. al. [LaZ84] and is also shown in the performance results given in

Section 6.

- 7-

Sprite RPC

Request

Figure 50 This shows a block transfer of 4 Kbytes of data in a single RPCO The
request message is divided into 4 fragments that each contain 1 Kbyte of data.
Each fragment is sent in its own network packet, and the l'th fragment is
identified by a bitmask with the l'th bit set. All the fragments get sent before
waiting for the reply message which acknowledges the receipt of all the fragments.

3.3.1. Message Fragments

Transferring a large data block in a single RPC is done by dividing large
request and reply messages into fragments. Each fragment is sent in a network
packet, and all the fragments are implicitly acknowledged by the next message
from the receivero Figure 5 illustrates fragmenting during an RPC that transfers
a 4 Kbyte data block to the servero The request message gets divided into 4 frag­
ments, and the server returns a reply after receiving all the fragmentso Each frag­
ment does not have to be acknowledged individually, and this contributes to the
improvement in performance with fragmenting. The other main performance sav­
ings is that fragments are re-assembled into complete messages at interrupt timeo
This means there are the same number of process switches in an RPC that
transfers a small amount of data and in one that uses large fragmented messageso

Each fragment contains four pieces of control information that are used dur­
ing reassembly: the amount of data it contains, the offset of the data within the
message, the number of fragments in the message, and a fragment identifiero The
data size and offset allow the fragment to be copied into its correct location in the
message's buffer when it arrives. This format also means that the loss of a frag­
ment in the middle of a message does not prevent subsequent fragments from
being copied correctly.

A fragment is identified by a bitmask: the I'th fragment of a message has the
I'th bit of its identifying mask set. As fragments arrive, their identifying bitmask
is or'd into a summary bitmask to record their arrival. The summary bitmask

- 8-

Sprite RPC

indicates when the message is complete, and it detects if a fragment is a duplicate
that arrived because of a retransmission. Duplicate fragments can be discarded
without having to copy them into their destination buffer.

3.3.2. Lost Fragments
Lost message fragments raise a few issues, and the Sprite RPC system doesn't

not yet solve all the problems in the best way. This sub-section describes the
problems and the trade-offs, and Appendix C details the way the Sprite RPC sys­
tem currently handles the situation.

The simple reaction to lost message fragments is to retransmit the entire mes­
sage. If the receiver is a slower machine, however, this strategy may not work.
This is because the fragments are sent out with almost no delay in between them
so a slow receiver, or one with a poor network interface, may always drop the last
fragments of a message. This problem is evident in Sun's network filesystem
[NFS85] and RPC protocol [RPC85J, and it is compounded because the protocol
discards a message if any fragments are lost. Sun has two different machine
types, and the newer Sun-3 is much faster than their Sun-2 model. The slower
Sun-2 is not able to successfully receive a message that requires more than two
network packets if it is sent from a Sun-3. To work around this problem, the Sun
network filesystem limits the size of blocks sent from Sun-3's to Sun-2's so that at
most two packets are used per message.

Another way to handle missing fragments, and the way the Sprite RPC sys­
tem currently does it, is to optimize the re-send so that only the missing frag­
ments are transmitted. This handles the situation of sending to a slow receiver,
but it adds some complexity to the protocol. The receiver must tell the sender
which fragments it has received. It does this by returning its summary bitmask to
the sender when it sees that it has lost fragments; this is called a partial ack­
nowledgment. The receiver also has to set up a timeout period after which it can
check for missing fragments. While partial re-send will eventually get all the frag­
ments to a poor receiver, it may require several iterations if the receiver can get
only a couple fragments from each re-send. Also, as described in Appendix C,
there are some messy details that crop up in the current implementation.

The final alternative is to re-send the message with a delay in between the
output of each fragment. This gives extra time to a slow receiver, or to one that
is just overloaded. The Sprite kernel has a call-back queue that is used to call
procedures at specified times in the future. This can be used to set up calls to
output the fragments at regular intervals. AJso, delays could be used in conjunc­
tion with partial re-send. In this case, the first time a message is sent there would
be no delay between fragments. Then, if some fragments were lost, the missing
fragments would be re-sent with a delay in between them to increase the chance
that the receiver gets them. The RPC system does not currently use delays,
although they look promising. Future work includes experimentation with these
ideas to determine a good solution to the problem of lost fragments.

- 9-

Sprite RPC

4. Many Clients and Many Servers
The last section presented the RPC network protocol in terms of a single

client process and a single server host with one server process. This section
extends the RPC system to a world of many client and server hosts. This section
also presents extensions that support concurrency within each host so that a client
kernel can have more than one process making a remote procedure call at the
same time, and so that a server kernel can service many clients at one time.

4.1. Client Channels

The Sprite RPC system uses client channels to connect processes on a client
host to a server process on a server host. The use of channels reduces the state
information that a server has to keep. A server does not have to know about all
the processes which access the server, only about the client channels they use.
Each host keeps a few client channels so that more than one process can make
RPCs at the same time, and any process can use any free client channel. A sim­
ple system of two client hosts and one server host is shown in Figure 6. The effect
of a client channel is to serialize the RPCs from the various processes on the client
host that use the channel so that the network protocol can use implicit ack­
nowledgment; the next request message from the client channel implicitly ack­
nowledges the last reply message sent to the channel.

Client Host A
Channels

0
0 • • •

Client Host B

I Channels

10
0 • •

0

/

Server Host

Server
Processes

0

0
<l.o

• • •

Figure 6. A server host keeps several server processes so it can handle RPC re­
quests from more than one client. A client process is connected to a server pro­
cess over a client channel, and each kernel has more than one client channel so
more than one of its processes can do RPC at the same time. RPCs are serialized
over a client channel so the network protocol can use implicit acknowledgment.

- 10-

Sprite RPC

4.2. Multiple Server Processes

A server kernel keeps many server processes so that it can execute service
procedures for many clients at one time. It is not practical, however, for a server
host to have a different server process for every possible client channel in the sys­
tem; Sprite is designed for an environment of a few hundred hosts and each one
has several client channels. Instead, a server host keeps a limited number of
server processes and multiplexes them between the client channels that use the
server. This can be done because usually only a small number of client channels
are using the server at any one time.

A server host assigns a server process to a particular client channel for a
series of RPCs. When a request comes from a client channel that has no server
process, the network layer on the server assigns a free server process to the client
channel. The server process remains assigned to the client channel until the net­
work layer on the server notices that it has not received a new request message
from the channel recently. At that point, the network layer sends a probe mes­
sage to the client channel that requests an explicit acknowledgment for the last
reply to the channel. The explicit acknowledgment from the client channel ends
the series of RPCs between it and the server process so the server process is free
to be re-assigned to an active client channel.

A server only keeps track of the RPC protocol for those channels to which it
has assigned a server process, and the state for the RPC protocol between a chan­
nel and a server process is kept in a data strucure associated with the server pro­
cess. To help the network layer on the server match a message from a client
channel with the correct server process, all messages from a client channel give
the ID of the server process that was used to service the channel's last request.
The ID is returned to the client with each reply and explicit acknowledgment so
that it can provide the information for the next RPC. Most of the time the server
process suggested by the client channel is correct. If the channel has been inac­
tive, however, the server process has probably been re-assigned to another active
client channel. If this is the case, the server searches its pool of server processes
for a free one and assigns it to the client channel.

The use of just a few client channels by a client host, as opposed to a client
channel for every process, for example, increases the effectiveness of assigning a
server process to a client channel for a series of RPCs. The RPCs from all the
processes on the client host are concentrated onto a few channels so the rate at
which RPCs are done on each channel is more than the rate from each individual
process. This reduces the amount of time the server process for the channel waits
for a new request, and it also reduces the chance that the server process will get
taken away and assigned to a more active client channel.

The network layer on the server checks periodically for server processes that
are assigned to inactive channels. It schedules a scavenging procedure to be called
about once a second that scans the pool of server processes for ones than have
been idle since the last time it checked. If a server process has been idle then the

- 11 -

Sprite RPC

scavenger sends a probe message to the client channel.

The rate at which the server processes are checked by the scavenger has to

be low enough so that it doesn't add too much overhead to the system, but is also

has to be fast enough so that server processes can be reclaimed during times of

peak load. It is important to have free server processes because the server dis­

cards requests if there is no free server process. This problem, client starvation,

can be made rare by keeping enough server processes to handle peak loads. For

example, a prototype of Sprite's network filcsystem was implemented in a system

of about 12 workstations, and the main file server kept 8 server processes. The

system was in daily use for several months and no client requests were ever dis­

carded. Still, more experience is needed with Sprite in a system with a large

number of hosts to be able to tune the rate at which server processes are

reclaimed and to determine how many server processes should be kept.

4.3. Broadcast RPC

The final addition to the RPC protocol for a real environment of many

servers is a broadcast form of RPC. Broadcast RPC is implemented by broad­

casting the request message to all hosts (Ethernet supports broadcasts), giving the

first reply to the client process, and discarding any subsequent replies. All hosts

have to process broadcast messages to some extent so broadcasts are expensive to

the network community. Because of this, the RPC system does not retry if there

is no reply after the timeout period. Instead, the client process is returned an

error so that it can retry the RPC at a rate that does not saturate the network.

These semantics of the broadcast RPC make it suitable for clients that need to

locate server hosts. It is not a reliable broadcast, one that ensures that all hosts

have received the request. That is rather expensive to implement and it is not

required by any Sprite services.

5. Message Handling

The previous two sections have glossed over the details of how the network

layer handles messages. This section describes how the network layer is organized

to handle messages efficiently. The network layer is divided into the network

module and the RPC dispatcher. The network module sends and receives packets

over the network, and it is independent of the protocol sending the messages.

The RPC dispatcher is called by the network module at interrupt time when a

packet for the RPC protocol arrives.

The network layer does three things to transmit messages efficiently. The

first is that, when possible, the network module uses the basic Ethernet protocol

[MeB76] to send network packets between machines. The second is that part of

the RPC network protocol is implemented at interrupt time by the RPC

dispatcher so some messages can be handled without incurring the cost of a pr<r

cess switch into a client or server process. The third is that the buffering system

that the network module and the RPC dispatcher communicate with is designed

- 12-

Sprite RPC

to minimize copies in large block transfers.

The advantage of using the basic Ethernet protocol is that it is a bare-bones
protocol that is efficient to implement. The disadvantage is that packets can only
be transmitted over a single Ethernet cable. The RPC protocol does not depend
on the protocol used by the network module, however. The network module uses
the basic Ethernet protocol to reach hosts on the same ethernet, and more com­
plex protocols to reach Sprite hosts on other networks. Currently the network
module only implements the basic Ethernet protocol, but the Internet Protocol(IP)
[IPSO], a datagram protocol that handles packet routing in an internet, will be
supported in the future.

5.1. The RPC Dispatcher
The RPC dispatcher is called at interrupt time by the network module to

handle an arriving packet. The dispatcher is divided into the client dispatcher
and the server dispatcher because the RPC protocol is asymmetric. Three general
cases for both dispatchers are listed here, and the details of what happens in the
client and server dispatcher are discussed below.

(1) The packet is a complete message needed by the receiving process. The
dispatcher copies the packet into buffers owned by the receiving process and
notifies the process that it has received a message.

(2) The packet is a message fragment. The dispatcher copies the fragment to its
offset within the message buffer and notifies the receiver only if the message
is complete.

(3) The packet is a message that is not needed by the receiving process. The
dispatcher handles the message according to the RPC protocol without giving
it to a process. This is done either because there is no process waiting for the
message, or because it is more efficient for the dispatcher to handle the
packet. This saves the cost of copying the message to the receiver's buffer
and switching to the receiving process.

The client dispatcher passes replies and explicit acknowledgments to client
processes without taking any special action. Other messages, however, are pro­
cessed by the client dispatcher, and the client process (if any) is not notified that a
message arrived. For example, the dispatcher handles probe messages that the
server sends after the client channel becomes in-active. At this point there is no
process using the channel, or it is being used for RPC with a different server, so
the dispatcher returns the explicit acknowledgment to the server. The client
dispatcher also handles partial acknowledgments as described in Appendix C.

The server dispatcher only passes request messages to server processes. The
other kinds of messages - duplicate requests, probes, and acknowledgments -
are handled by the dispatcher because the server process may be busy executing a
service procedure. Even if the server process is not busy, handling these other
kinds of messages in the dispatcher saves the cost of a process switch and

- 13-

Sprite RPC

1 Server
Clients 1 R 1 Processes

0 : ep,.-----,y I Do
~

I

0 Server D
Dispatch

~
o~k': o

• •
•
•

I

I

, Network

•
•

Figure 7. This figure depicts message traffic from the server's point of view.
The server dispatcher passes new requests to server processes which later return
reply messages to their clients. The dispatcher also takes care of returning expli­
cit acknowledgments and re-sending replies that clients have lost.

simplifies the server processes. This means that the special cases in the RPC pro­
tocol on the server side (things like re-sending replies and returning explicit ack­
nowledgments) are implemented by the server dispatcher instead of the server
processes. See Figure 7.

Before the server dispatcher can take any action for the server process, how­
ever, it must decide which is the correct server process. This is because when a
message comes from a client channel it might not specify the correct server pro­
cess. It does include the ID of the server process that handled the previous
request from the client channel, but as was described in Section 4.2 the server
process may have been re-assigned to another client channel. It is the job of the
server dispatcher to check that the server process is still assigned to the client
channel, and to choose a new server process if necessary.

5.2. Building Messages

The RPC system supports the gradual assembly of a message as it is passed
through the various layers in the implementation. A message starts forming in
the stub procedures as they package up their parameters. A stub procedure then
passes the message to the network layer which adds control information to the
front of it. Finally, the network module adds low-level addressing information to
the message for transmission on the network. One goal of the RPC system is to
be able to build messages gradually without having to re-copy a message each

- 14-

Sprite RPC

time information is added to it.

To allow a message to be built up gradually, the various pieces of a message

are_ each stored in separate buffers, and the buffers are linked together in a list.

See Figure 8. Stub procedures start creating a message by setting up a list of one

buffer that contains the parameters in the message_ The network layer adds con­

trol and addressing information to the front of the message by pre-pending buffers

to the list_ Finally, the network module uses a DMA Ethernet controller, the Intel

82586, that copies the data from the list of buffers directly to the network. This

means data is copied only one time, from its buffer to the network.

The use of a buffer list also makes setting up a fragmented message easy. A

buffer list for the fragment is set up that references only the part of the message

data that goes into the fragment. This means that the data for a fragment does

not have to be copied into a new buffer. The third buffer in Figure 8, for exam­

ple, might really be a section of a much larger buffer_

5.3. Unpacking Messages

The counter-part to the problem of gradually forming messages is the prob­

lem of efficiently unpacking the parameters from a message. A simple approach

ends up copying parameters three times: the network hardware copies a message

once from the network to a buffer in the network module, the dispatcher copies

RPC Message

Transport
Header

RPC
Control

Information

Param 1

Param 2

Param 3

Buffer List

Figure 8. A message has three sections: the transport header, RPC control in­

formation, and the parameters of the service procedure. The sections are kept in

separate buffers to they can be set up by different layers of the implementation.

The network module uses a DMA interface that copies directly from the list of

buffers to the network.

- 15-

Sprite RPC

Param 1

Network

Module's Stub's Param 2

Buffer Buffer

/ RPC Control Param 1

Network / Param 2
Param 1 Param 3

Param 2 Param 3 ~

Param 3

Figure 9. This shows a buffering system that requires copying tbe parameters in
an arriving message three times, each arrow represents a copy.

the parameters in the message a second time to another buffer owned by the stub
procedure, and the stub procedure copies each parameter a third time to the final
location of the parameter. This is shown in Figure 9. Copy costs become impor­
tant with large parameters; it takes about .8 milliseconds to copy I Kbyte on a
Sun-2.

It is tempting to try have only a single copy by having the network hardware
copy the parameters directly (via DMA) from the network to their final locations.
This is not practical, however, because it requires that the system anticipate what
kind of message will arrive next so it can set up buffers ahead of time, and it
requires that the hardware interpret some control information in each message
that specifies .the size of each parameter. It is also tempting to pass the network
module's buffer to the stub procedure in order to save a copy. This is not done,
however, because the network module can save on setup costs by keeping a small
number of buffers and recycling them quickly.

The RPC system takes an intermediate approach that saves a copy for the
largest parameter in a message. This is an optimization oriented towards the
block transfer requirements of the filesystem; the read and write service pro­
cedures have a few small parameters and a single large data blo~k. The parame­
ters in a message are divided into two sections, and the dispatcher copies the two
sections to separate buffers. This allows the stub procedures to set things up so
that the dispatcher copies the large data block in a message directly to its final
location. This is illustrated in Figure 10.

- 16-

Sprite RPC

Network

Network

Module's

Buffer

RPC Control

Param 1

Param 2

Param 3

/

Stub's

Buffer

Param 1

Param 2

Param 1

i
!~=' ====

Param 2

/
Param 3

~

Figure 10. The parameters in a message are divided into two sections and the
dispatcher copies the two sections to two separate buffers. The stubs put a large
data block in the second section and set up the buffers so that the dispatcher
copies the data block directly to its final location.

The parameters in messages being sent out are also divided into two sections,
and this allows the same sort of optimization. For messages being sent out, a stub
can set things up so a large data block is copied directly from its location to the
network. This means that a large data block only gets copied 3 times as it is
moved from the client process's buffer across the network to the server process's
buffer; there is one copy on output, and there are two copies on input. Appendix
D has a client and server stub procedure that illustrate the use of two data areas.

A more general version of this scheme would be to have a variable amount of
control information in each message that specified the number and size of each
parameter. This would allow the dispatcher to copy all the parameters to their
final locations instead of copying some to an intermediate buffer. The RPC sys­
tem uses a fixed format, however, because it simplifies the implementation and
still optimizes the common case of one large parameter and several small ones.

Implicit in this discussion is that receivers have to set up buffers before the
message arrives. Clients can do this easily because they know what to expect in a
reply message. Servers, however, have to keep buffers ready that are large
enough to handle the largest request message. The main advantage of pre­
allocated buffers is that receivers can optimize the buffering for the largest param­
eter. Another benefit is that memory allocation (if any) is not in the critical path
of message handling; in clients it is done before the RPC, and in a server process
it is done after the reply message has been sent.

- 17-

Sprite RPC

6. Performance

This section presents some benchmarks and assesses the cost of different parts
of the RPC system. The benchmarks were executed on the Sprite operating sys­
tem in spring of 1986. Sprite at that point supported multitasking, priority
scheduling, user programs, virtual memory, and an incomplete (client side only)
version of the filesystem. The kernel was still under development and was not yet
used for day-to-day work.

The hardware used for the benchmarks were Sun-2's with Intel 82586 Ether­
net controllers on a 10 Megabit Ethernet. The Intel controllers are very good and
rarely lose packets. They are configured with 18 buffers for receiving packets so a
packet is only lost if 19 or more packets arrive back-to-hack. (Sprite also runs on
machines with 3Com ethernet controllers, but they can only buffer two packets
and were not used in the performance benchmarks.)

6.1. RPC Overhead and Bandwidth

The basic cost of RPC and the bandwidth of the system were measured by
timing a sequence of Send RPCs. The Send remote procedure call just sends a
block of data from the client to the server. The amount of data sent was varied
from 0 to 14 Kbytes, and three runs were made at each different size. A send of
zero bytes measures the fixed overhead in an RPC, and sizes greater than 1 Kbyte
measure the effects of fragmenting.

The time to send different amounts of data is plotted in Figure 11. Each test
was done three times so there are three points plotted at each size. Each time is
the elapsed real time divided by the number of RPCs done; this averages in over­
head from all layers of the implementation as well as overhead from other parts of
the Sprite kernel like priority scheduling. The effect of fragmenting is evident in
the steps that occur just past each multiple of 1 Kbyte. (Actually, messages up to
about 1400 bytes can fit in one packet. Fragmenting is still done on 1 Kbyte
boundaries, but fragmenting isn't turned on until a message won't fit in one
packet. That's why the first step in the graph occurs past the 1 Kbyte point.)
Other than the steps, the plot shows a nearly constant increase in the time for
each additional 1 Kbyte of data sent, about 2.4 milliseconds/Kbyte. This slope
indicates a limiting bandwidth of 415 Kbytes/sec as the size of the packets is
increased. Saving a copy as described in Section 5.3 saves .8 msec/Kbyte. If this
were not done, the slope of the graph in Figure 12 would be 3.2 msec/Kbyte, and
the limiting bandwidth would only be 310 Kbytes/sec.

As plotted in Figure 12, the bandwidth starts to level out around 380
Kbytes/sec, which is about 30% of the Ethernet's 10 Mbit capacity. This sup­
ports Lazowska's result from tests on similar hardware that the server's CPU is
the bottle-neck and the network is underutilized [LaZ84]. Even blocksizes of 4
Kbytes and 8 Kbytes result in good bandwidth, about 275 and 330 Kbytes/sec
respectively. If the system was limited to 1 Kbyte messages, ie. fragmenting was
not implemented, the maximum bandwidth would be about 135 Kbytes/sec. The

- 18-

Sprite RPC

Milliseconds per RPC

:: L r I I] ; I :r .::l r ; ; : ; ;
M :: ::::::::1::::::::1::::::::"::::: r:r::::::r 1 ::,:::::::·: ·: +::::::.~ .. :::::+:::::::::::::::::1::::::::!

e 25 -·······<··------·f··-·----,··-------~-------·:·········f·-·-----~---------: s e ' ' ' ' . ' . ' ' . -- -------- .. ----- .. ., .. -------.-------- ~-------- ... ---.--- ... ------ ----- .. -.. ---------. ' . ' ' . . . '
c 20 . . . ' . . . ' . . . ' ' ' ' . . . ' . ' . ' . . 0 '
n . ' ' . ' ' ' . ' ' ' ' d 15
s . ·.········~········:········l········r·······,·· :···I···· , .. , .. r········:········:

1

: • : • : • I I I . l]: ·1 l ;
.

0 1024 3072 5120 7168 9216 11264 13312 15360
Bytes per RPC

Figure 11. The time for a Send RPC with various amounts of data. Each test
was done three times so there are three points plotted at each size. The times are
the average of the real time required to perform a series of RPCs, including sys­
tem overhead. The system fragments on 1 Kbyte boundaries; this is evident in
the steps in the graph. The overall slope of the graph is 2.4 milliseconds/Kbyte.
This indicates a limiting bandwidth of 415 Kbytesfsec.

- ID-

Sprite RPC

B
y
t
e
s

I
s
e
c

400000

350000

300000

250000

200000

150000

100000

50000

Bandwidth vs. Message Size
....... , ...

.............................. ,.- , --------.-------- ..

o 0 I I ' o ' o ' ' o o

. . ' . ' . ' . '

' . . ' ' ' . '

: : : : . : . :

. ' . . '
'

o o I I
0

o

o I 0 0
0

t

' '

. . ' . '
.

.
• ' • 0

•

'
o 0 0 I

I

o o o I
I

o

• • • 0 ' • • ' '

•·••·•••••••••••r•••••••...-•••••••'\••••••••r••••••••r•••••••.,•••••••·o••••·•·- .. ·-····

'
0 • • • • '

o I I o o o o

'
o 0 I I o ' '
I I o o o

' . ' .
I I I o
• 0 • •
. ' . ' ' . ' .
. . . ' ' . .

o o o I I ' . ' ' . . . ' . '

-------·----------·------------·4•··-----·------- . ----~------·-··-··-···
 .. ···---- ... -----------------·--------------- .. ·-----·-·--------·

o
I o o o o I

. ' . ' ' ' ' . ' ' . '
I '

I o o

o
I o o

. . .

. . .
.. -.--.--- -· ~--- -- ---~ _______ .; ____ ---.; ---- --- -~ --- ____ _; ____ ---- ;_ ·-- ---- ~- ------ _:.__-.- --- ~- -------:.------ _:

' ' ' ' ' ' ' ' '

' . ' . ' . ' ' .
. ' . ' ' . ' ' .
' ' . '

' ' . ' ' . ' '

' . ' ' ' '
'

. '
.

' . . ' . '
'

I I o I I o
0

. . '

. . . ' . . .

. . . . ' . .

. '
.

' . '
. ' . . ' . .

' • • 0 0 • • • ' ' • ' • '

. ' , ····r······· ;·······:·······:·······r···············<······ ;·······]····· r··r···· ... :

--·--:-----·--:-··-·--·r··-··-·r-··----·:·---···r----·-·r--·---·r-·····--
:--·--·-·~·······-~-·--·--r------:--------:···-----:

' . . ' ' ' ' ' . ' '

. . . ' . . . '

. . ' . . ' .

. . '
'
. . . ' ' .
. ' . . ' .
o 0 0

0 I I

o o o o

I o o

·:--·- .. -·r··--·-T·-----r-- .. ·-r- r··-----j·----·-·:-- .. -·--r---.... r----r· .. --r--·----r·- .. ·-r·-.. --1 :

' '
. . .

'
. . . : : :

' ' ' '
.

' . . '
.

---:-------- ~------- ..:. ------- ~--.--.--:------- -~--.-- .. .:. -----.- ~- -----. -~- --. -· . ..: .. --.--.:----.--. ~ -·- -· ---~-------.; ;-- ----- .:

. ' . ' . '
• • • ' ' •

'
• • 0 '

' . . . ' . . .
. '

. . . .
.
'

o I I

•

' 0 ' . . .

0 1024 3072 5120 7168 9216 11264 13312 15360

Bytes per RPC

Figure 12. A plot of bandwidth vs. message size. The bandwidth increases with

message size but it starts to level out around 380 Kbytes/sec. The notches in the

bandwidth occur each time an additional fragment is needed to send the request

message.

bandwidth from the Send RPC represents an upper bound on the bandwidth

available to Sprite's network filesystem, and it is comparable to the effective disk

bandwidths, 220 and 440 Kbytesfsec, reported by McKusick [McK84] for the

4.2BSD UNIX filesystem.

6.2. Comparison to the V system

The V system is a message passing system that has been tuned for high per­

formance. Its performance is a lower bound on the overhead that the RPC sys­

tem has from its use of messages. Table 1 lists some performance results from V

[Che84] and the corresponding results for Sprite; both sets of results come from

tests on Sun-2 workstations. As the null send operation indicates, there is a con­

siderable amount of overhead in the Sprite implementation of RPC. About 2.8

- 20-

Sprite RPC

Sprite vs. V system

Operation Sprite V system

Null send 5.8 2.2

1024 byte send 7.5 5.8

Table 1. The performace of similar operations in the V-system and Sprite.

About 2.8 msec of the 5.8 msec of Sprite overhead is due to message handling.

The rest is from other parts of the RPC system.

msec of this overhead is directly related to message handling, and this close to the

cost of sending a message and getting a reply in the V system. This means that

the message handling as described in Section 5 is ok, but that other parts of

Sprite need tuning.

6.3. Contributions to Overhead

A more detailed tracing was done to determine the time spent in various

parts of the RPC system. A time-stamped trace was made by inserting calls to a

trace routine at various points in the code. The trace information recorded

included a time-stamp, a type, and possibly a copy of the RPC header part of the

current message. (The trace was used for debugging as well as performance

analysis.) Recording the trace information slowed down the RPCs, so the cost of

tracing was measured and subtracted out of the results presented here.

The test performed during the detailed tracing was a series of Echo RPCs;

the client sent 128 bytes to the server which then returned them. Two sets of

trace results are given: initial results done before any system tuning was done, and

another set that corresponds to the performance plotted in Figures 11 and 12.

The initial trace results are given in Table 2. The Average column is an

average over 5 traces, including system overhead. The Best column estimates the

time required for each step in the absence of external events. The estimates were

made by looking at the raw trace records and picking the most common time for

a task. Typically a task had the same time in most RPCs, but occasionally an

external event would slow down the task. The scheduler, for example, wakes up

once a second and recomputes priorities.

The total estimated overhead (from the Best column) was about 7 400

microseconds. The Echo tests were also done with no trace records kept, and the

average time for each Echo in that case was 8400 microseconds. Some of the

remaining 1000 microseconds is spent in the network module when receiving the

message. The rest is probably due to errors in using the Best column to estimate

what happened in the absence of tracing.

These early results indicated that the process switch time and the time to

output a packet were high. Switching from the dispatcher to the waiting process

was llOO to 1300 microseconds, and a complete process switch was taking about

- 21 -

Sprite RPC

Initial Trace of the Echo RPC (128 bytes echoed)
Times in microseconds

Where Task Average Best
Client Start

Allocate Channel 329 282
Message Setup 392 286
Request Output 1252 1148
(Sub Total) 1973 1716

Server Request Arrives
Server Chosen 128 128
Server Notified 826 714
Server Starts 2516 1275
Reply Output 1606 1445
(Sub Total) 5076 3562

Client Reply Arrives
Client Notified 862 862
Client Starts 1198 1145
Client Returns 133 107
(Sub Total) 2193 2114
Total Overhead 9242 7392

Table 2. The early results from a time-stamped trace of an Echo RPC. The
effect of taking the trace records themselves has been factored out of the data.
The Average column is an average over 5 traces, while the Best column is an esti­
mate of the best time for the task.

2200 microseconds! This was due to two expensive operations done during a pro­
cess switch. The first is a weighted CPU usage computation that r.?quires
software multiplies and divides. The second is the setting up of an alarm for a
time-slice; this requires reading a real-time counter, converting to seconds, and
enqueuing a call-back routine. The time spent in the network module was also
high. Some of this was due to the complex interface to the Intel controller, and
some was due to excess error checking in the initial version of the code.

Both process switching and the network module were cleaned up in an effort
to improve performance. The timer module was changed to work directly with
chip intervals instead of seconds. The CPU usage computation was simplified. A
new priority was added that eliminated the usage computation and the setting up
of the time-slice during process switch, and server processes were set to run at this
high priority. The network module was tuned by removing excess error checking,
and by simplifying various data structures so they could be set up at system
start-up. For example, the addresses passed to the Intel controller need to be byte
swapped, and this can be done once because the network module re-uses the same

- 22-

Sprite RPC

buffers.

The average of an untraced set of echoes improved from 8400 microseconds
to 6050 usee after the these changes to the kernel. The results of the new detailed
traces are given in Table 3. The best time to output a packet decreased about
520 usee on the server, and about 564 usee on the client. Another 915 usee is
saved during the process switch to the server process because no CPU usage com­
putation is done, and because no time-slice is set up. Also, allocation of the client
channel sped up because it involved getting a monitor lock; the locking code has
been re-written in assembly language.

However, the cost of handling the message on the client increased in spite of
(or because of) the changes to the timer module and the CPU usage computation.
The time on the client to set up the message is still high, and so is the client's
context switch time. (This is the "Client Starts" entry in the table.) The client
process runs at a normal priority so there is still a lot of scheduling overhead at
process switch time. This poor performance reflects the state of the kernel's

Current Trace of the Echo RPC (128 bytes echoed)
Times in microseconds

Where Task Average Best Difference
Client Start (156) (132) (+52)

Allocate Channel 293 236 -46
Message Setup 473 350 +64
Request Output 605 584 -564
(Sub Total) 1371 1170 -546

Server Request Arrives (7293) NA
Server Chosen 215 215 +87
Server Notified 793 793 +79
Server Starts 541 360 -915
Reply Output 953 925 -520
(Sub Total) 2502 2293 -1269

Client Reply Arrives (4972) NA
Client Notified 1087 1087 +225
Client Starts 1514 1410 +265
Client Returns 176 165 +58
(Sub Total) 2777 2662 +548
Total Overhead 6650 6125 -1267

Table 3. Trace results after improving the server's process switch time and tun­
ing the network module. The format of the table is the same as Table 2, except
that the Difference column gives the difference between the Best column in Table
2 and Table 3.

- 23-

Sprite RPC

development; most of the effort has been in the addition of new features, and
much less effort has been spent analyzing and improving the performance.
Micro-benchmarks that test various kernel operations need to be developed so
that costly operations can be identified and tuned.

7. Comparisons to Other Systems
The Sprite RPC system incorporates two important features from the RPC

work by Birrell and Nelson [BiN84] for the CEDAR/MESA system. The first is
that it uses a special purpose network protocol that only uses 2 messages per RPC
in the common case. The other feature is that the service procedure is executed
at most one time during an RPC. This is because the reply message is ack­
nowledged, either implicitly or explicitly. This allows Sprite services to imple­
ment locking and other operations that cannot be repeated. The main difference
between the two systems is the way clients and servers are connected. In the
CEDAR/MESA system the clients and servers are user processes that are bound
together through the Grapevine [Bir82] name service. In the Sprite RPC system
the binding is between a client channel and a server process. This binding is
dynamic and is controlled by the server so it can allocate its server processes to
active channels.

The Sun RPC [RPC85] system differs in that it uses existing protocols to
transport its messages. It can use either TCP [TCP80], which is a reliable byte
stream protocol, or UDP [UDP79], which is an unreliable datagram protocol.
These may be less efficient than a special purpose protocol, but they can be used
in inter-networks. Another important difference is that reply messages are not
acknowledged. Instead, a server caches its recent replies and re-sends them when
it detects a retransmission by the client. If the cache fills up, the oldest cached
replies are discarded; this means that a service procedure could get executed more
than once per RPC. Sun takes this approach because it prefers to implement
stateless servers. A stateless service can have its service procedures executed
more than once with no ill effect. Also, a stateless server can crash and re-boot
and a client only experiences a delay; no state is lost. However, it also means that
Sun's network filesystem [NFS85] does not implement file locking, for example.

Other systems have paradigms other than RPC for communication between
hosts. The V kernel [Che84] is a good example of an efficient message passing
kernel. Its performance is considered nearly optimal [LaZ84] so it provides a good
standard with which to compare. Also, its use of messages is similar to the way
the RPC protocol uses messages; the send operation is followed immediately by a
receive operation that blocks the process until a reply arrives. These semantics
were found to be useful and less error-prone than more arbitrary uses of messages.

Reliable byte stream protocols, TCP for example, are used by many systems
for network communication. A byte stream protocol is built on top of an unreli­
able datagram protocol as is the Sprite RPC protocol. Its concern, however, is a
reliable, uncongested, bi-directional flow of bytes between two points, while the

- 24-

Sprite RPC

concern of the RPC protocol is the efficient exchange of the request and reply
message. Note that it is possible to implement an RPC protocol on top of byte
streams, but probably with less performance. The Sun RPC system can use TCP,
for example.

8. Summary and Conclusions

Sprite uses remote procedure call as its basic form of network communica­
tion, and, for better performance, RPC is implemented on top of a special-purpose
network protocol. Performance is emphasized so that remote services will be
cheap enough to be used frequently. Three features of the RPC implementation
are designed to increase its performance. (a) Implicit acknowledgment is used to
reduce message overhead. (b) The buffering system is optimized for block
transfer; a data block is only copied 3 times when going from a client process's
buffer over the network to a server process's buffer. (c) Fragmentation, while it
adds some complexity to the system, increases the performance of large data
transfers.

Of these three techniques, implicit acknowledgment provides the best perfor­
mance increase for RPCs that transfer a small amount of data. In this case the
message overhead is high compared to the total time of the RPC so it is
worthwhile to eliminate explicit acknowledgment messages. The other perfor­
mance related features, fragmenting large transfers and saving a copy on large
data blocks, significantly increase performance of large data transfers. With frag­
menting the system achieves a bandwidth of 380 Kbytes/sec, while with no frag­
menting the best bandwidth is only 135 Kbytes/sec. Eliminating one of the copies
for large data blocks saves .8 msec/Kbyte, which is about one third of the margi­
nal cost of sending each additional Kbyte (2.4 msec/Kbyte).

The Sprite RPC system differs from most other RPC systems in that it is
used only for remote procedure call from one operating system kernel to another.
A client process directs RPC requests to a server host, and it does not have to
worry about setting up connections or addressing particular server processes;
client channels and server processes are not visible outside the RPC system.
Internally the RPC system sets up tempory bindings between client channels and
server processes so that successive requests through a client channel implicitly
acknowledge the server's replies. This arrangement also limits the amount of
state information that the server side of the RPC system has to maintain. A
server only has to keep track of channels that are activly using the server, and it
does not have to know about all the client processes in the system.

Finally, there are some limitations to this RPC system. It is used by the
Sprite kernel to execute service procedures in other Sprite kernels; there is no
direct way to invoke user-level service procedures, although the RPC system
could be used to implement that. Also, there is no stub compiler; the number of
different service procedures is limited so it is not too painful to hand-code the
required stubs.

- 25-

Appendix A
Message Control Information

This appendix contains the format of th.e control information included in
each message, and a short explanation of each field. The control information
comes after the header used by the low level transport protocoL For the basic
Ethernet protocol, for example, there is a 14 byte header: 6 bytes of destination
address, 6 bytes of source address, and a 2 byte protocol identifier.

Per Message Control Information
Field Width

Flags 16 bits
Client Host ID 32 bits
Server Host ID 32 bits
Channel ID 16 bits
Server Process ID 16 bits
RPC Sequence Number 32 bits
Number of Fragments 16 bits
Fragment Mask 16 bits
RPC Command/Error 16 bits
BootiD 32 bits
Data 1 Size 16 bits
Data 2 Size 16 bits
Data 1 Offset 16 bits
Data 2 Offset 16 bits
Total Size 36 bytes

Table AL The layout of the control information that is at the beginning of
every message sent by the RPC protocol. The type of the message is encoded in
the Flags field, and for simplicity all fields are present in all types of messages.

Sprite RPC

Sprite RPC

Flags - 16 bits
The Flags field includes the message type and some flags which may or may
not be present. The message types are REQUEST, REPLY,
PARTIAL_ACK, and EXPLICIT_ACK. The flags are SERVER (the mes­
sage is for a server process), ACK_REQUESTED (return an explicit ack­
nowledgment message to the sender), ERROR (the service procedure
returned an error), and LAST_FRAGMENT (this is the last fragment of the
message).

Host IDs - 32 bits each
The client and server Sprite host IDs uniquely identify the client and server
hosts. Currently Sprite IDs are assigned locally, but in the future they may
follow the Internet addressing standards [IPSO].

Channel ID - 16 bits
Identifies a particular client channel on the client host.

Server Process ID - 16 bits
In messages from the server, this is the ID of the server process that is han­
dling the request. In messages from the client, this is the latest server process
ID received from the server; it is used as a hint by the dispatcher on the
server to quickly match incoming messages to the correct server process.

RPC Sequence Number- 32 bits
The sequence number is the same for all messages pertaining to the same
RPC.

Number of Fragments - 16 bits
This is non-zero if the message is fragmented; it indicates how many frag­
ments make up the message.

"Flags" Field Encoding
Name Bits Comment
ACK_ REQUESTED Ox0001 Acknowledgment of message requested
LAST_ FRAGMENT Ox0002 This is the last fragment
ERROR Ox0008 Error return from the service procedure,

the command field contains the error code
SERVER Ox0010 Packet is for a server process
REQUEST Ox0100 Normal command request
PARTIAL_ ACK Ox0200 A partial acknowledgement
EXPLICIT_ ACK Ox0400 An explicit acknowledgement
REPLY Ox0800 A reply from a server

Table A2. The encoding of the Flags control field.

- 27-

Sprite RPC

Fragment Mask- 16 bits
The I'th fragment of a REQUEST or REPLY message is identified by setting
the I'th bit of this field. Messages are limited to 16 fragments. This field is
zero if the message is not fragmented. If the message type is
PARTIAL_ ACK, this field contains the summary bitmask that indicates
which fragments the receiver has.

RPC Command/Error - 16 bits
This field contains the ID of the remote service procedure to execute. In
REPLY messages this field contains an error code if the ERROR flag is set.

Boot ID - 32 bits
This is a time-stamp chosen by the client host when it re-boots. When this
changes from one RPC to the next the server knows the client has re-booted.

Data Sizes - 16 bits each
These fields indicate how much data is in the two data parts of the message.

Data Offsets - 16 bits each
These fields indicate the relative position of the data areas in the complete
message. For non-fragmented messages these fields are always zero.

Appendix B
RPC Sequence Numbers and Client Crashes

A client kernel initializes its sequence number at boot time (to 1) and then

increments it for each new RPC by a client process. The servers in the system

need to be informed somehow that the client has rebooted and reset its sequence

number; otherwise they might discard the client's messages because of their low

sequence numbers. Instead of using a reliable broadcast to reach all the servers in

the system, or doing a special RPC with each one, the protocol uses a time stamp,

called the boot ID, to detect when a client has rebooted. The client kernel initial­

izes its boot ID to the real-time clock at boot time, and it doesn't change until the

next reboot. When a server sees a new boot ID from a client, it resets its notion

of the client's current sequence number.

Client's with no real-time clock need some other way to initialize their boot

ID to value that is distinct from what they chose the last time. The implementa­

tion allows a boot ID of zero; if it is zero, the server accepts the request message

regardless of the sequence number. This trick is used to do an RPC that returns

the time so the client can initialize its boot ID.

Sprite RPC

Appendix C
Partial Re-send on Fragment Loss

A system of partial re-send and partial acknowledgment is part of the Sprite
RPC network protocol. The current implementation is not perfect, however, so it
is presented in this Appendix with some suggestions for future improvements.

When doing partial re-send there are series of related problems. The first is
how to tell the sender of a fragmented message which fragments have been suc­
cessfully received. This is done by returning a partial acknowledgment message
that contains the receiver's summary bitmask. The summary bitmask has a bit
set for each fragment that has been successfully received.

The next problem is when should the receiver return a partial acknowledg­
ment. In the current implementation, the first time a receiver checks for missing
fragments is when the last fragment of a message arrives. The last fragment is
flagged with the LAST_ FRAGMENT flag so the dispatcher knows when to check.
The flag is required because on a partial re-send the last fragment sent may not
be the last fragment in the message. If the dispatcher detects missing fragments
at this point it returns a partial acknowledgment to the sender.

If the last fragment is lost, the situation is handled differently on the client
and the server. The client process will timeout waiting for its reply, and at that
point the it checks to see if it is receiving a fragmented reply. If it is, it notes the
number of fragments it has received and waits again. If it times out again and
has not received more fragments then it decides that some are missing and it
returns a partial acknowledgment to the server.

The servers, however, are passive, and they do not set up timeout periods.
Instead, a server has to wait for fragments to arrive and decide when some frag­
ments have been lost. It does not detect the loss of the trailing fragment until the
client retransmits its request and duplicate fragments begin to arrive. Each time
a duplicate fragment arrives the server returns a partial acknowledgment.
Because this can result in several partial acknowledgments, the client does not re­
send right away when it gets a partial acknowledgment. Instead, the client
dispatcher saves the summary bitmask in the state of the client channel, and the
client process waits until its timeout period elapses before resending. This is done
so that it resends with the latest summary bitmask from the server.

The loss of the last fragment by the server can result in very poor perfor­
mance if it happens very often. The situation can be improved by setting up a
timer on the server when a fragmented message begins to arrive. The current
implementation does not do this because it is extra overhead to enqueue call-back
routines and then dequeue them after all the fragments arrive safely. Not having

Sprite RPC

Sprite RPC

a timer on the server, however, creates such a poor worst case that it is probably
worth it for the server to set up a timer when receiving a fragmented request.

The other possible modification to the current implementation would be to
not have the client resend a fragmented request message upon timeout. Instead,
it could send a probe message to which the server could reply with a partial ack­
nowledgment. Also, when re-sending a fragmented message, both the client and
the server could introduce delays between fragments so the receiver has a better
chance of getting all the fragments.

- 31 -

Appendix D
Example Stub Procedures

The client stub for the remote Read() procedure is given in Figure Dl. The
stub uses a local buffer, readParams, to hold the three input parameters to the
procedure. It sets up the first data area of the request message to reference this
local buffer, and the second data area is empty. By convention, the second data
area is used for large data blocks. The client stub also sets up buffer pointers for
the two data areas of the reply message. In this case both data areas are used.
The first contains the return parameter, amountRead, and the second contains
the bytes read from the file. Because there are only two parameters, no local
buffer is needed by the stub. The dispatcher will copy the amountRead value and
the data block directly to the client process's buffers for those values.

Figure D2 shows the corresponding server stub for the remote Read pro­
cedure. The dispatcher copies the three parameters in the first data area into a
buffer previously set up by the server process. The server stub references this via
requesUvfessagePtr<>dataL The stub then calls the Loca!Read() procedure which
sets the buffer variable to point to a buffer in the filesystem's cache. Finally, the
server stub sets up pointers to the two buffers containing the data for the two
data areas of the reply message. In this case, the two buffers are the one in the
filesystem cache, and the local variable amountRead. After the server stub
returns, the server process sends the reply message to the client process.

Sprite RPC

Sprite RPC

RemoteRead(filePtr, offset, size, buffer, amountReadPtr)

FsFile *filePtr;

{

}

int offset;
int size;
char *buffer;
int *amountReadPtr;

struct ReadParams {
int filelD;
int offset;
int size;

} readParams;
RpcMessage requestMessage;

RpcMessage replyMessage;

int returnStatus;

readParams.filelD = filePtr- > fileiD;

readParams.offset = offset;

readParams.size = size;

requestMessage.command = RPC_ READ;

requestMessage.datal = (char *)&readParams;

requestMessage.sizel = sizeof(readParams);

requestMessage.data2 = (char *)0;

requestMessage.size2 = 0;

replyMessage.datal =(char *)amountReadPtr;

replyMessage.sizel = sizeof(int);

replyMessage.data2 = buffer;

replyMessage.size2 = size;

returnS tat us = RPC _Call(filePtr- >serveriD, &request Message, &reply Message);

return(returnStatus);

Figure Dl. The client stub procedure for the read service procedure. Rou­

tines in the Sprite kernel call a general Read() procedure, and Read() calls Re­

moteRead() if the file is remote.

- 33-

Sprite RPC

SrvRead(requestMessagePtr, replyMessagePtr)
RpcMessage *requestMessagePtr;
RpcMessage *replyMessagePtr;

{

}

struc:t ReadParams {
int lile!D;
int offset;
int size;

} *readParamsPtr;

char *buffer;
int amountRead;
int returnStatus;

readParamPtr = (struct ReadParams *)requestMessagePtr- >datal;

returnStatus = LocalRead(readParamPtr- >file!D, readParamPtr- >offset,
readParamPtr- >size, &buffer, &amountRead);

replyMessagePtr->datal =(char *)&amountRead;
replyMessagePtr- >size! = sizeof(int);
replyMessagePtr- >data2 = buffer;
replyMessagePtr- >size2 = amountRead;

return(returnStatus);

Figure D2. The server stub procedure for the read service procedure, Local­
Read(). Loca!Read() is also called by the general Read() procedure when it
reads from a local file.

- 34-

[Bir82]

[BiN84]

[ChZ83]

[Che84]

[UDP79]

[TCP80]

[IP80]

[LaZ84]

[McK84]

[MeB76]

[NFS85]

[RPC85]

[We085]

References

A. D. Birrell, "Grapevine: An Exercise in Distributed Computing",
Comm. of the ACM 25, 4 (Apr. 1982), 260-274 ..

A. D. Birrell and B. J. Nelson, "Implementing Remote Procedure
Calls", ACM Transactions on Computer Systems 2, 1 (Feb. 1984),
39-59.

D. R. Cheriton and \V. Zwaenepoel, "The Distributed V Kernel and
its Performance for Diskless Workstations", Proceedings of the 9th
Symp. on Operating System Prin., Operating Systems Review 17, 5
(Nov. 1983), 129-140.

D. R. Cheriton, "The V Kernel: A software base for distributed
systems.", IEEE Software 1, 2 (Apr. 1984), 19-42.

"DoD Standard User Datagram Protocol", Internet ~Vorking Group
/EN 8, May 1979.

"DoD Standard Transmission Control Protocol", Internet Working
Group /EN 129, Jan 1980.

"DoD Standard Internet Protocol", Internet ~Vorking Group /EN 128,
Jan 1980.

E. D. Lazowska and J. Zahorjan, "The Performance of Diskless
workstations", Technical Report 84-06-01, University of Washington,
June 1984.

M. K. McKusick, "A Fast File System for UNIX", ACM Transactions
on Computer Systems 2, 3 (Aug. 1984), 181-197 ..

R. M. Metcalfe and D. Boggs, "Ethernet: Distributed Packet Switching
for Local Computer Networks", Communications of the ACM 19, 7
(July 1976), 395-404.

Sun's Network File System, Sun Microsystems, 1985.

RPC Protocol Specification, Sun Microsystems, 1985.

B. B. Welch and J. K. Ousterhout, "Prefix Tables: A Simple
Mechanism for Locating Files in a Distributed Filesystem", Technical
Report UCB/Computer Science Dpt. 86/261, University of California,
Berkeley, Oct. 1985.

Sprite RPC

